
Realistic Water Simulation
Moussab Ibrahim∗

mtibrahi@andrew.cmu.edu
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Lingheng Tony Tao
linghent@andrew.cmu.edu

Entertainment Technology Center
Pittsburgh, Pennsylvania, USA

Weier Flora Xiao
weierx@andrew.cmu.edu

Information Networking Institute
Pittsburgh, Pennsylvania, USA

Figure 1: Realistic Water Simulation

Abstract
Simulating and rendering realistic water is a compelling yet chal-
lenging topic in computer graphics, especially in game development,
where it plays a crucial role in enhancing immersion and visual ap-
peal. High-quality water simulations can captivate players, creating
memorable experiences, while poorly rendered water can detract
from realism and player engagement. Achieving realistic water ef-
fects requires addressing various aspects, including dynamic wave
interactions, foam shading, and the increasing demand for inter-
activity. This paper explores key techniques and methodologies

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Carnegie Mellon University, 15673 - Visual Computing Systems
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

for water simulation and rendering, highlighting the interplay be-
tween physical dynamics and visual fidelity to achieve realistic and
interactive water in modern graphics applications.

Keywords
Water, Simulation, Fluid, Rendering, FFT, SPH, PBF

ACM Reference Format:
Moussab Ibrahim, Lingheng Tony Tao, and Weier Flora Xiao. 2024. Realistic
Water Simulation. In Proceedings of Carnegie Mellon University. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Rendering and simulating realistic water is not only a popular
topic in computer graphics but also a challenging one. Especially in
the field of game development, realistic water can be breathtaking
and become a highlight in the game, while poorly rendered water
can significantly reduce player immersion or even drive players
away. Realistic water involves a wide range of knowledge, from the
dynamic changes of waves to the shading of foam, as well as today’s
higher demands for interactivity. Water simulation is an important

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

and cutting-edge topic in computer graphics. In this paper, we will
introduce some of the techniques used in water rendering.

2 Linear Wave Superposition Method
In water rendering, vertex animation of the water surface is one of
the key components for achieving realistic effects. The term wave
commonly refers to the undulating effect on the water surface. In
reality, the undulations of the water surface usually exhibit a subtle
periodicity—it appears rhythmically up and down. However, it is
challenging to discern this periodicity with the naked eye, and it
might even seem fairly random. To achieve such undulations, we
need a mechanism—or an algorithm—that can generate periodic
waveforms. These mechanisms, which can generate periodic wave-
forms controllable through parameters such as frequency, period,
and amplitude, among other concepts we will introduce shortly, are
called oscillators. Below, we will introduce the concept starting
with the simplest oscillators.

2.1 Sine Oscillator
The sine wave is the simplest and most fundamental waveform
we have learned. Nelson L. Max[5] was the first to propose using a
sequence of sine wave curves with varying amplitudes to simulate
the undulations of the water surface.

Figure 2: Parameters of a sine wave.

For the horizontal position (𝑥, 𝑧) at time 𝑡 , the formula for a sine
wave oscillator is given by

𝑦 (𝑥, 𝑧, 𝑡) = 𝐴 sin(((𝑥, 𝑧) · k) − 𝜔𝑡 + 𝜑) (1)

where:
• 𝐴 is called the amplitude. It refers to the height difference
between the peak (crest) of the waveform and the equilibrium
position, which is also half the difference between the peak
and the lowest point (trough).
• 𝜆 is called the wavelength. It represents the distance be-
tween two adjacent wave crests. Using the wavelength, we
can compute the frequency 𝜔 in the formula, which is de-
fined as

𝜔 =
2
𝜆
. (2)

• 𝜑 is called the phase constant. By adding different phase
constants, the entire waveform can be shifted. Multiplying
it by time 𝑡 enables the waveform to progress over time.
• k is the direction, indicating the direction of wave propa-
gation. This vector is also referred to as the wave vector or
wave number.

For a single sine wave oscillator, the resulting waveform is reg-
ular and visually appears highly repetitive, as shown in Figure 3.

Figure 3: Oscillating wave effects generated by a single sine
oscillator (top) and a sum-of-sine oscillator (bottom). It can
be observed that a single sine oscillator produces periodic
waveforms but appears rather dull and clearly unrealistic
compared to water waves. In contrast, the sum-of-sine oscil-
lator produces waveforms that still retain some periodicity
but are more realistic and resemble the water surface.

However, as also shown in Figure 3, when we superimpose mul-
tiple sine waves with different frequencies, speeds, and amplitudes,
the result becomes more interesting. Such an oscillator is called a
sum-of-sine oscillator. As the name suggests, the sum-of-sine
oscillator is the result of adding multiple sine oscillators. For a point
x = (𝑥, 𝑧) at time 𝑡 , its height 𝑦 = ℎ(x, 𝑡) can be expressed as:

ℎ(x, 𝑡) =
∑︁

𝐴𝑖 sin((k𝑖 · x) − 𝜔𝑖𝑡 + 𝜑𝑖) . (3)

2.2 Gerstner Oscillator
A characteristic of waveforms generated by sine waves is their
smooth crests. This is why waveforms produced even by sum-
of-sine oscillators often appear insufficiently realistic—real-world
water surfaces, particularly oceans with rough waves, tend to have
sharper crests and broader troughs. Next, we introduce the Ger-
stner oscillator. This oscillator generates Gerstner waves, which
are characterized by sharp crests and wide troughs.

The mathematical expression for a Gerstner wave, where a point
x = (𝑥0, 𝑧0) in the 𝑥𝑧-plane oscillates in the 𝑦 direction, is given by:

𝑥 = 𝑥0 −
𝑁𝑤∑︁
𝑖=1

k̂𝑖𝐴𝑖 sin(k𝑖 · x0 − 𝜔𝑖𝑡 + 𝜙𝑖),

𝑦 =

𝑁𝑤∑︁
𝑖=1

𝐴𝑖 cos(k𝑖 · x0 − 𝜔𝑖𝑡 + 𝜙𝑖),

𝑧 = 𝑧0 −
𝑁𝑤∑︁
𝑖=1

k̂𝑖𝐴𝑖 sin(k𝑖 · x0 − 𝜔𝑖𝑡 + 𝜙𝑖).

(4)

where 𝑁𝑤 represents the total number of waves, k𝑖 is the wave
vector of the 𝑖th wave with magnitude 𝑘𝑖 = |k𝑖 |, and the unit
direction vector is k̂𝑖 = k𝑖

𝑘𝑖
.

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

3 A Simple Discussion on Complex Numbers
Before diving into the statistical modeling methods below, we need
to have a basic understanding of complex numbers; otherwise, it
will be difficult to comprehend many mathematical foundations.

3.1 Complex Numbers
A complex numberis an extension of real numbers. A complex
number z is typically written as

z = 𝑎 + 𝑏𝑖 (5)

where 𝑎 and 𝑏 are real numbers, and 𝑖2 = −1. Since no real scalar 𝑖
can satisfy 𝑖2 = −1, 𝑖 is referred to as the imaginary unit, describ-
ing an imaginary number. Here, the real number 𝑎 is called the real
part of the complex number z, and 𝑏 is called the imaginary part.
The magnitude of the complex number is

|z| =
√︁
𝑎2 + 𝑏2, (6)

and the conjugate of the complex number z is a complex number
with the same real part but opposite imaginary part, denoted as z∗:

z∗ = 𝑎 − 𝑏𝑖. (7)

Complex numbers can undergo basic addition, subtraction, and
multiplication by computing the real and imaginary parts sepa-
rately and substituting 𝑖2 = −1 when it appears. This provides the
computation formulas for complex numbers:

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖,
(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖,
(𝑎 + 𝑏𝑖) (𝑐 + 𝑑𝑖) = 𝑎𝑐 + 𝑎𝑑𝑖 + 𝑏𝑐𝑖 + 𝑏𝑑𝑖2

= (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖 .

(8)

3.2 Matrix Representation of Complex Numbers
We can equivalently represent a complex number z = 𝑎 + 𝑏𝑖 as a
matrix:

𝑎 + 𝑏𝑖 ≡
[
𝑎 −𝑏
𝑏 𝑎

]
. (9)

It is straightforward to verify that this matrix representation is
equivalent for addition, subtraction, and multiplication. For in-
stance,

(𝑎+𝑏𝑖)+(𝑐+𝑑𝑖) ≡
[
𝑎 −𝑏
𝑏 𝑎

]
+
[
𝑐 −𝑑
𝑑 𝑐

]
=

[
𝑎 + 𝑐 −(𝑏 + 𝑑)
𝑏 + 𝑑 𝑎 + 𝑐

]
≡ (𝑎+𝑐)+(𝑏+𝑑)𝑖 .

(10)

3.3 Rotation Representation with Complex
Numbers

If we represent a 2D vector v =

[
𝑥

𝑦

]
as a complex number 𝑥 + 𝑦𝑖 ,

then applying a matrix transformation
[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
,[

cos𝜃 − sin𝜃
sin𝜃 cos𝜃

] [
𝑥

𝑦

]
=

[
𝑥 cos𝜃 − 𝑦 sin𝜃
𝑦 sin𝜃 + 𝑦 cos𝜃

]
, (11)

is equivalent to the rotation transformation learned earlier. Ac-
cording to Section 3.2, the rotation matrix is also equivalent to
cos𝜃 + 𝑖 sin𝜃 , meaning we can interpret the complex number r =

cos𝜃 + 𝑖 sin𝜃 as a rotation. Here, we observe for the first time a fas-
cinating connection between complex numbers and trigonometric
functions.

3.4 Geometric Interpretation of Complex
Numbers

A complex number z = 𝑎 + 𝑏𝑖 consists of a real part 𝑎 and an imag-
inary part 𝑏. It can also represent a point (𝑎, 𝑏) in the 2D plane
or a vector from the origin to (𝑎, 𝑏), where the horizontal axis is
called the real axis, and its unit is 1, while the vertical axis is called
the imaginary axis, and its unit is 𝑖 . This 2D plane is called the
complex plane.

Note that the magnitude of a vector (𝑎, 𝑏) in the complex plane is√
𝑎2 + 𝑏2, the same as the magnitude of the corresponding complex

number. A point in the complex plane can also be represented in
polar coordinates as

z = 𝑟 (cos𝜃 + 𝑖 sin𝜃), (12)

where 𝑟 is the magnitude of the vector (or complex number) z, and
𝜃 is the argument of the vector (or complex number) z, defined as

𝜃 = arg(z) = tan−1 (𝑏/𝑎) . (13)

Thus, complex numbers are naturally suited for discussing 2D peri-
odic rotation problems.

3.5 Euler’s Formula
Finally, we introduce the most important formula in this chap-
ter—the Euler’s Formula, which connects trigonometric functions
with exponential functions:

𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin𝑥, (14)

where 𝑒 is the base of the natural logarithm, 𝑖 is the imaginary unit,
and the trigonometric functions are in radians. A special case of
Euler’s Formula when 𝑥 = 𝜋 is

𝑒𝑖𝜋 + 1 = 0. (15)

This formula simultaneously features five of the most significant
constants in mathematics: 𝑒, 𝑖, 𝜋, 1, 0, making it often celebrated by
mathematicians as the most beautiful and extraordinary formula.

To understand this formula, we start with theTaylor Expansion.
In mathematics, for a function 𝑓 (𝑥) that is infinitely differentiable
with real or complex variables, its Taylor series is expressed as:

𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑓 (𝑛) (𝑎)
𝑛!

(𝑥 − 𝑎)𝑛, (16)

where 𝑛! is the factorial of 𝑛, and 𝑓 (𝑛) (𝑎) is the 𝑛-th derivative of
𝑓 at 𝑎. By expanding 𝑒𝑥 , sin𝑥 , and cos𝑥 based on Equation (16), we
get:

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ . . . ,

sin𝑥 = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− . . . ,

cos𝑥 = 1 − 𝑥2

2!
+ 𝑥4

4!
−

(17)

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

Substituting 𝑥 = 𝑖𝑧 into 𝑒𝑥 , we obtain:

𝑒𝑖𝑧 = cos 𝑧 + 𝑖 sin 𝑧. (18)

Thus, we verify Euler’s Formula1.

Euler’s Formula also has a geometric interpretation: in the com-
plex plane, 𝑒𝑖𝑥 describes a rotation on the unit circle. Here, 𝑥 is
the angle of rotation (in radians), representing the position of a
point after rotating counterclockwise by 𝑥 radians from (1, 0). Us-
ing Euler’s Formula, we can further express a complex number in
the form:

z = 𝑟𝑒𝑖𝜃 , (19)

where 𝑟 is the magnitude of the complex number, 𝜃 is the argument,
and 𝑖 is the imaginary unit.

If you have more sections or need adjustments, feel free to let
me know!

4 Statistical Modeling Methods
The methods introduced in the previous section allow us to gen-
erate relatively realistic water surfaces. However, a critical issue
arises when we raise the camera to a certain height—the repeti-
tive texture patterns become easily noticeable. This occurs because
no matter what type of wave superposition we use, the resulting
function is ultimately periodic, leading to observable repetitions
at certain scales. While this issue might be less noticeable from a
grazing angle, it becomes evident when viewed from a top-down
perspective.

We can mitigate this visual repetitiveness by carefully adjusting
parameters or overlaying enough sine waves with different fre-
quencies, wave numbers, and amplitudes. However, this requires
tools to help generate such data. Meanwhile, research from other
disciplines—fluid mechanics and oceanography—shows that even
Gerstner waves struggle to accurately describe real water surfaces.
Instead, ocean waves are often highly random [6]. If we denote the
wave height at position x and time 𝑡 as ℎ(x, 𝑡), then ℎ should be
treated as a random variable. To compute wave heightsℎ that follow
realistic probability distributions as closely as possible, we need to
understand the most critical mathematical tool in this process—the
Fourier Transform.

4.1 Fourier Transform
The Fourier Transform is a mathematical tool that converts sig-
nals from the time domain (or spatial domain) into the frequency
domain. Intuitively, it decomposes a complex waveform into a se-
ries of simple sine and cosine waves, providing information about
their frequencies, amplitudes, and phases through a certain trans-
formation.

For water rendering, the goal is to simulate realistic wave pat-
terns. The main challenges in simulating realistic water waves are
as follows:

1Although widely introduced, this method relies on Taylor series and differentiation
in the complex domain, which themselves often require Euler’s Formula, leading to a
circular argument. This verification is intended for understanding and testing purposes
rather than a rigorous proof.

(1) They exhibit a certain periodicity. Since water waves follow a
periodic undulating pattern, we can assume they consist of
waves of different wavelengths, whose propagation, inter-
ference, and attenuation exhibit periodic characteristics.

(2) They also exhibit significant randomness. As mentioned ear-
lier, oceanographic studies have shown that wave undu-
lations are typically random. However, these undulations
exhibit statistical regularities, meaning wave heights and
wavelengths can be described using statistical methods.

(3) They have global effects. The propagation of water waves
creates continuous effects across the entire water surface.

The Fourier Transform allows us to decompose a waveform
that appears to have no discernible computational pattern into a
combination of simple sine waves. This enables us to reconstruct
the water surface using this set of waveforms.

4.2 Discrete Fourier Transform (DFT)
While the ideal wave height is a continuous signal, it is impossible
to handle every point on the water surface continuously during
rendering. In practice, model files cannot represent a surface with
an infinite number of vertices. Therefore, we can consider the wave
height as a discrete signal. If our water surface is represented by a
512 × 512 grid, we can treat the height of each vertex as a discrete
two-dimensional signal.

Definition (Discrete Fourier Transform) For a discrete signal 𝑓
with 𝑁 sampled points, the Discrete Fourier Transform (DFT)
of 𝑓 is:

𝑓 = (𝑓 [0], 𝑓 [1], . . . , 𝑓 [𝑁 − 1]), (20)
producing an 𝑁 -dimensional array

F = (F[0], F[1], . . . , F[𝑁 − 1]), (21)

where

F[𝑘] =
𝑁−1∑︁
𝑛=0

𝑓 [𝑛]𝑒
−2𝜋𝑖𝑘𝑛

𝑁 =

𝑁−1∑︁
𝑛=0

𝑓 [𝑛] exp
(
−2𝜋𝑖𝑘𝑛

𝑁

)
. (22)

Using a brute-force method to compute the DFT of a discrete
signal 𝑓 with 𝑁 sampled points requires 𝑁 complex multiplications
and 𝑁 − 1 complex additions for each F[𝑘]. This results in an
𝑂 (𝑁 2) algorithm, which is computationally expensive. The Fast
Fourier Transform (FFT) is an algorithm designed to compute
the DFT efficiently, reducing the complexity to 𝑂 (𝑁 log𝑁). Since
𝑁 is typically a large number, this reduction in Big-O complexity
has significant practical performance implications.

4.3 Four-Point DFT
The core idea of FFT is to exploit the periodicity and symmetry
properties of Equation (22). To better understand FFT, we start with
a simple example of a DFT with 𝑁 = 4.

Using Euler’s formula,

𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin𝑥,
we have

𝑒−𝑖𝜋/2 = −𝑖 . (23)

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

Substituting into Equation (22), the four-point DFT formula simpli-
fies to:

F[𝑘] =
3∑︁

𝑛=0
(−𝑖)𝑘𝑛 𝑓 [𝑛], (24)

which, when expanded, becomes:

F[𝑘] = 𝑓 [0] + (−𝑖)𝑘 𝑓 [1] + (−1)𝑘 𝑓 [2] + 𝑖𝑘 𝑓 [3] . (25)

Thus, F⊤ can be written as:

F⊤ =


𝑓 [0] + 𝑓 [1] + 𝑓 [2] + 𝑓 [3]
𝑓 [0] − 𝑖 𝑓 [1] − 𝑓 [2] + 𝑖 𝑓 [3]
𝑓 [0] − 𝑓 [1] + 𝑓 [2] − 𝑓 [3]
𝑓 [0] + 𝑖 𝑓 [1] − 𝑓 [2] − 𝑖 𝑓 [3]

 =


1 1 1 1
1 −𝑖 −1 𝑖

1 −1 1 −1
1 𝑖 −1 −𝑖

 𝑓
⊤

(26)
Here comes an optimization step. Recalling the properties of

matrix multiplication, observe:
1 1 1 1
1 −𝑖 −1 𝑖

1 −1 1 −1
1 𝑖 −1 −𝑖



𝑓 [0]
𝑓 [1]
𝑓 [2]
𝑓 [3]

 =


1 1 1 1
1 −𝑖 −1 𝑖

1 −1 1 −1
1 𝑖 −1 −𝑖



𝑓 [0]
𝑓 [2]
𝑓 [1]
𝑓 [3]

 . (27)

Additionally, note:
𝑓 [0] + 𝑓 [2] + 𝑓 [1] + 𝑓 [3]
𝑓 [0] − 𝑓 [2] − 𝑖 𝑓 [1] + 𝑖 𝑓 [3]
𝑓 [0] + 𝑓 [2] − 𝑓 [1] − 𝑓 [3]
𝑓 [0] − 𝑓 [2] + 𝑖 𝑓 [1] − 𝑖 𝑓 [3]

 =


(𝑓 [0] + 𝑓 [2]) + (𝑓 [1] + 𝑓 [3])
(𝑓 [0] − 𝑓 [2]) − 𝑖 (𝑓 [1] + 𝑓 [3])
(𝑓 [0] + 𝑓 [2]) − (𝑓 [1] + 𝑓 [3])
(𝑓 [0] − 𝑓 [2]) + 𝑖 (𝑓 [1] − 𝑓 [3])

 .
(28)

Thus, we can precompute 𝑓 [0] + 𝑓 [2], 𝑓 [0] − 𝑓 [2], 𝑓 [1] + 𝑓 [3],
and 𝑓 [1] − 𝑓 [3] to accelerate computation. Note that for four-point
DFT, we can divide it into even and odd terms: even terms (𝑓 [0],
𝑓 [2]) and odd terms (𝑓 [1], 𝑓 [3]). This division facilitates recursive
divide-and-conquer processing, breaking a DFT problem into two
subproblems (even and odd terms). Specifically, the four-point DFT
can be expressed as:

F[𝑘] =
3∑︁

𝑛=0
𝑓 [𝑛]·𝑒−𝑖

2𝜋
4 𝑘𝑛 =

∑︁
𝑛=0,2

𝑓 [𝑛]·𝑒−𝑖
2𝜋
4 𝑘𝑛+

∑︁
𝑛=1,3

𝑓 [𝑛]·𝑒−𝑖
2𝜋
4 𝑘𝑛 .

(29)
These even and odd terms represent two independent subproblems.

4.4 Four-Point FFT
For two complex numbers a and b and a given complex number
𝛼 , we compute two output complex numbers A and B using the
following formula:

A = a + 𝛼b,
B = a − 𝛼b. (30)

Next, let’s illustrate this with a diagram. In Equation (30), the
outputA depends on both input a and input b, as shown in Figure 4.

Figure 4: Connecting inputs to outputs. Note that regardless
of how a, b, A, or B are positioned, each output must connect
to both inputs.

When two operations are depicted together in one diagram, an
intersecting pattern inevitably emerges, as shown in Figure 5. This
operational pattern is referred to as the butterfly operation.

Figure 5: Diagram of butterfly operations for complex mul-
tiplication and addition. This diagram clearly indicates the
source of data for each output.

In the four-point DFT, we can quickly draw the butterfly opera-
tion diagram, as shown in Figure 6.

Figure 6: Butterfly operation pattern in four-point DFT. Here,
𝛼 = 1.

Based on the optimization strategy proposed in the previous
section, it becomes clear that the butterfly operation is the smallest
execution unit of the divide-and-conquer approach in FFT. The but-
terfly operation represents the concrete implementation of dividing
and merging.

Additionally, note that the outputs of a butterfly operation can
be reused in subsequent butterfly operations, ultimately yielding
the desired DFT result.

Figure 7: Computation diagram for a four-point FFT. Note
that the diagram contains four butterfly operations. Each
butterfly operation involves two complex calculations, re-
sulting in a total of eight calculations, compared to the 16
calculations required previously.

4.5 Cooley-Tukey FFT Algorithm
Building on the idea of the four-point FFT, we observe that effi-
ciently solving the DFT requires leveraging its symmetry properties.
In the general case of 𝑁 points, the simplifications made in Section
4.3, such as 𝑒−𝑖𝜋/2 = −𝑖 , no longer hold significant value. Therefore,
we introduce a new twiddle factor,

𝑊𝑁 = 𝑒−𝑖
2𝜋
𝑁 . (31)

Noting that

𝑒𝑖
2𝜋𝑘
𝑁 = 𝑒𝑖

2𝜋 (𝑘+𝑚𝑁)
𝑁 , (32)

we derive an important property:

𝑊 𝑘
𝑁 =𝑊 𝑘+𝑚𝑁

𝑁 ,∀𝑚 ∈ Z. (33)

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

Here, the exponent 𝑘 takes the form:

𝑘 = 𝑛 · 𝑁

2stage
, (34)

where 𝑛 is the vertical index. Additionally, observe that there are
a total of log2 𝑁 stages, and at each stage, the range covered by
butterfly operations doubles, reaching at most 𝑁 /2. Therefore, the
complexity of computation at each stage is 𝑂 (𝑁), and the total
complexity is bounded by 𝑂 (𝑁 log𝑁).

The core idea of the divide-and-conquer approach in FFT is to
decompose the 𝑁 -point DFT into:

(1) Subproblem of even points. 𝐸 [𝑘] =
𝑁 /2−1∑
𝑚=0

𝑓 [2𝑚] ·𝑊 𝑘𝑚
𝑁 /2.

(2) Subproblem of odd points. 𝑂 [𝑘] =
𝑁 /2−1∑
𝑚=0

𝑓 [2𝑚 + 1] ·𝑊 𝑘𝑚
𝑁 /2.

Finally, the even and odd parts are combined to obtain the result of
the original DFT:

𝐹 [𝑘] = 𝐸 [𝑘] +𝑊 𝑘
𝑁 ·𝑂 [𝑘],

𝐹 [𝑘 + 𝑁 /2] = 𝐸 [𝑘] −𝑊 𝑘
𝑁 ·𝑂 [𝑘] .

(35)

4.6 Statistical Oceanographic Model
According to oceanographic research, the wave height ℎ(x, 𝑡) at a
horizontal position x = (𝑥, 𝑧) and time 𝑡 can indeed be described
as a sum of sine waves [6], as shown previously:

ℎ(x, 𝑡) =
∑︁

𝐴𝑖 sin((k𝑖 · x) − 𝜔𝑖𝑡 + 𝜑𝑖) .

Since sine and cosine functions can be converted into each other
via a phase shift, the wave height can also be described as a sum of
cosine waves:

ℎ(x, 𝑡) =
∑︁

𝐴𝑘 cos((k𝑘 · x) − 𝜔𝑘𝑡 + 𝜙𝑘). (36)

Notably, the term cos((k𝑘 · x) − 𝜔𝑘𝑡 + 𝜙𝑘) on the right-hand side
is the real part of 𝑒𝑖 ((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘) , since:

𝑒𝑖 ((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘) = cos((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘)+𝑖 sin((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘).
(37)

Thus, Equation (36) can be rewritten as:

ℎ(x, 𝑡) = Re
[∑︁

𝐴𝑘𝑒
𝑖 ((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘)

]
, (38)

where Re represents taking the real part of a complex number.
Simplifying the expression:

ℎ(x, 𝑡) = Re
[∑︁

𝐴𝑘𝑒
𝑖 ((k𝑘 ·x)−𝜔𝑘𝑡+𝜙𝑘)

]
= Re

[∑︁
𝐴𝑖𝑒

𝑖k𝑘 ·x𝑒−𝑖𝜔𝑘𝑡𝑒𝜙𝑘

]
= Re

[∑︁
(𝐴𝑖𝑒

−𝑖𝜔𝑘𝑡𝑒𝜙𝑘)𝑒𝑖k𝑘 ·x
]
.

(39)

Since wave height is a physical quantity, the imaginary part has no
physical meaning. Therefore, in subsequent descriptions, we omit
the Re notation2. The term (𝐴𝑘𝑒

−𝑖𝜔𝑘𝑡𝑒𝜙𝑘) is a function of wave
amplitude 𝐴𝑘 (associated with wave k) and time 𝑡 . We can use an

2In physics and mathematical analysis, omitting Re is a common convention. When no
ambiguity is introduced, only the real part is considered to have physical significance,
so it is assumed by default.

envelope function ℎ̃(k, 𝑡) to represent this part. This allows us to
simplify the wave height function into its complex form:

ℎ(x, 𝑡) =
∑︁
k

ℎ̃(k, 𝑡)𝑒𝑖k·x . (40)

Here, k = (𝑘𝑥 , 𝑘𝑧) is called the wave vector, a vector in the 2D 𝑥𝑧

plane pointing in the direction of wave propagation. Specifically:

𝑘𝑥 = 2𝜋
𝑛

𝐿
,

𝑘𝑧 = 2𝜋
𝑚

𝐿
.

(41)

where 𝑛 and𝑚 satisfy:

−𝑁
2
≤ 𝑛,𝑚 ≤ 𝑁

2
. (42)

𝐿 represents the horizontal domain size considered in ocean wave
simulation, effectively the side length of the wave grid area, de-
termining the actual physical size of the 2D simulation grid. 𝑁
is the number of discrete grid points, typically required to be an
even number. For example, 𝑁 = 256 means the area is simulated as
an 𝑁 × 𝑁 grid. A larger 𝑁 increases simulation accuracy but also
computational cost. A larger 𝐿 allows for simulating larger-scale
waves.

The wave vector has physical significance:

(1) Magnitude. Themagnitude of thewave vector |k| =
√︁
𝑘2𝑥 + 𝑘2𝑧 =

2𝜋
𝜆
, where 𝜆 is the wavelength. Thus, the magnitude of the

wave vector represents the spatial frequency of the wave,
which is the reciprocal of the wavelength.

(2) Direction. As discussed earlier, the wave vector indicates the
direction in which the wave propagates.

In Equation (40), the final component, ℎ̃(k, 𝑡), is referred to as
the amplitude Fourier component of the wave height field. It
is generated by a combination of a spatial spectrum and a Gauss-
ian random function, and it is the key factor influencing the time-
varying height of the water surface. Specifically,ℎ(x, 𝑡) is a physical
space representation (i.e., in the time domain or spatial domain) of
the wave height field, describing the height of the water surface at a
specific location and time. On the other hand, ℎ̃(k, 𝑡) is the Fourier
space representation of the wave height field, describing the com-
plex amplitude corresponding to a specific wave vectork and time 𝑡 .

ℎ̃(k, 𝑡) is typically a complex number. According to Equation
(19), its complex form is:

ℎ̃(k, 𝑡) = |ℎ̃(k, 𝑡) | · 𝑒𝑖𝜙 (k,𝑡) , (43)

which contains important physical information:

(1) Amplitude. The modulus of the complex number |ℎ̃(k, 𝑡) |
represents the strength of the wave.

(2) Phase. The argument of the complex number 𝜙 (k, 𝑡) indi-
cates the relative position of the wave in space.

Clearly, the complex amplitude |ℎ̃(k, 𝑡) | is a function of time 𝑡 , re-
flecting the dynamic process of wave evolution.

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

According to oceanographic studies, |ℎ̃(k, 𝑡) | can be estimated
using the Phillips Spectrum, which takes the form:

𝑃𝑛 (k) =
〈
|ℎ̃(k, 𝑡) |2

〉
= 𝐴

𝑒
− 1
(𝑘𝐿)2

𝑘4
|k̂ · ŵ|2, (44)

where

𝐿 =
𝑉 2

𝑔
. (45)

Here, 𝑉 is the wind speed, ŵ is the unit vector indicating the wind
direction, and 𝑔 is the gravitational acceleration constant. The final
term in Equation (44), |k̂ · ŵ|2, removes waves that are completely
perpendicular to the wind direction; this term equals 0 when the
wave propagation direction is perpendicular to the wind. It is a
function of the wave’s direction and magnitude.

Although this model is relatively simple, when the wave num-
ber 𝑘 = |k| becomes large (i.e., when the wavelength becomes
very small), the mathematical behavior of the Phillips Spectrum
causes poor numerical convergence [6]. Specifically, this poor con-
vergence leads to unstable or unrealistic behavior in the simulation
for high wave number components (i.e., short-wavelength waves).
To address this convergence issue, for short waves where 𝑙 ≪ 𝐿,
J. Tenssendorf proposed in [6] introducing an additional Gaussian
factor into Equation (44):

exp(−𝑘2𝑙2). (46)

4.7 Temporal Evolution of Wave Height Field
In Equation (44), although we estimate a time-dependent function
ℎ̃(k, 𝑡), the formula itself does not explicitly account for time. To
introduce temporal evolution, we generate an initial spectrum using
the Phillips spectrum and apply additional operations to simulate
time variance. First, we compute an initial height field in Fourier
space using two random samples from a Gaussian distribution:

ℎ̃0 (k) =
1
√
2
(𝜉𝑟 + 𝑖𝜉𝑖)

√︁
𝑃𝑛 (k) . (47)

Here, 𝜉𝑖 and 𝜉𝑟 are two independent random variables sampled
from a Gaussian distribution with mean 0 and standard deviation 1.
For each wave vector k, we now have an initial amplitude ℎ̃0 (k)
that follows the 𝑃𝑛 (k) distribution.

Next, we incorporate temporal variation through the dispersion
relation of water waves, expressed as:

𝜔2 (𝑘) = 𝑔𝑘, (48)

where 𝜔 (𝑘) is the angular frequency of the wave, indicating its
temporal frequency; 𝑔 is the gravitational acceleration constant;
and 𝑘 is the magnitude of the wave vector. Dispersion refers to the
phenomenon where wave components with different wave vectors
propagate at different speeds. Incorporating the dispersion relation,
the final amplitude as a function of wave vector k and time 𝑡 is:

ℎ̃(k, 𝑡) = ℎ̃0 (k)𝑒𝑖𝜔 (𝑘)𝑡 + ℎ̃∗0 (−k)𝑒
−𝑖𝜔 (𝑘)𝑡 . (49)

Here, ℎ̃0 (k)𝑒𝑖𝜔 (𝑘)𝑡 represents the forward-propagating wave com-
ponent, and ℎ̃∗0 (−k)𝑒

−𝑖𝜔 (𝑘)𝑡 represents the backward-propagating
wave component.

4.8 Inverse Fourier Transform for Generating
Wave Height Field

Since Fast Fourier Transform (FFT) operates on discrete signals,
the wave height field must be rewritten as a discrete function. To
achieve this, we first impose the following restriction:

0 < 𝑘, 𝑙 < 𝑁 − 1. (50)

Here, 𝑘 and 𝑙 are the discrete indices of the wave vector in the 𝑥
and 𝑧 directions in 2D Fourier space. Using these indices, the wave
vector can be defined as:

k =

(
2𝜋𝑘 − 𝜋𝑁

𝐿
,
2𝜋𝑙 − 𝜋𝑁

𝐿

)
. (51)

This redefinition introduces a shift of −𝜋𝑁
𝐿

to center the range of
the wave vector k symmetrically around the origin in the frequency
domain.

ℎ̃(k, 𝑡) remains the frequency domain representation of the height
field ℎ(x, 𝑡), so we need to transform it back to the time domain us-
ing the Inverse Fast Fourier Transform (IFFT). Without delving
into the derivation of IFFT due to space constraints, the formula
for the height at a grid point (𝑛,𝑚) at time 𝑡 is:

ℎ(𝑛,𝑚, 𝑡) =

1
𝑁 2 (−1)

𝑛
𝑁−1∑︁
𝑘=0

[
(−1)𝑚

𝑁−1∑︁
𝑙=0

ℎ̃(𝑘, 𝑙, 𝑡) exp
(
𝑖
2𝜋𝑚𝑙

𝑁

)]
· exp

(
𝑖
2𝜋𝑛𝑘
𝑁

)
.

(52)

Here, 𝑁 is the resolution of the grid.

4.9 Steps of the Inverse Fourier Transform
Algorithm

The IFFT consists of five main steps:

(1) Generate the initial spectrum. Create two spectral textures
containing ℎ̃0 (k) and ℎ̃∗0 (−k).

(2) Generate the Fourier amplitude map. Use the dispersion rela-
tion to generate a map containing ℎ̃(k, 𝑡).

(3) Perform 𝑁 horizontal 1D FFTs. Use the Fourier amplitude
map from the previous step as input.

(4) Perform𝑁 vertical 1D FFTs. Each row of the Fourier amplitude
map from the previous step serves as input.

(5) Multiply the amplitude by (−1)𝑚 and (−1)𝑛 , then scale by
1
𝑁 2 .

5 Position-Based Fluids (PBF) Algorithm
Position-Based Fluids (PBF) is a particle-based method designed for
real-time fluid simulations. It achieves stability and efficiency by
enforcing constraints on particle positions, bypassing the instability
issues present in force-based approaches like Smoothed Particle
Hydrodynamics (SPH). In this section, we describe the algorithm’s
steps and associated mathematical formulations.

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

5.1 Predict Position
The predicted position of each particle is computed using the par-
ticle’s velocity and external forces, such as gravity. The velocity
update is given by:

v𝑖 ← v𝑖 + Δ𝑡 ·
fext
𝑚𝑖

, (53)

where v𝑖 is the velocity, Δ𝑡 is the time step, fext is the external
force, and𝑚𝑖 is the particle mass.

The predicted position p𝑖 is then:

p𝑖 = x𝑖 + Δ𝑡 · v𝑖 , (54)
where x𝑖 is the current position.
This predicts where the particle will move under the influence

of its current velocity and applied forces. It is the first step in
simulating fluid dynamics over time.

5.2 Density Constraint
The density 𝜌𝑖 for particle 𝑖 is calculated using its neighbors within
a radius ℎ, applying a smoothing kernel𝑊 :

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗 ·𝑊 (p𝑖 − p𝑗 , ℎ) . (55)

One commonly used kernel is the poly6 kernel:

𝑊 (𝑟, ℎ) = 315
64𝜋ℎ9

(ℎ2 − 𝑟2)3, for 𝑟 < ℎ. (56)

The density constraint is defined as below, where 𝜌0 is the rest
density:

𝐶𝑖 =
𝜌𝑖

𝜌0
− 1, (57)

Then enforces incompressibility by ensuring the density of each
particle stays close to the target rest density 𝜌0.

5.3 Position Correction
To satisfy the density constraint, a position correction Δp𝑖 is applied
iteratively. The correction is computed using a constraint solver:

Δp𝑖 =
1
𝜌0

∑︁
𝑗

𝜆 𝑗 · ∇p𝑖𝑊 (p𝑖 − p𝑗 , ℎ), (58)

where 𝜆 𝑗 is a Lagrange multiplier determined for each particle.
This correction ensures that particles maintain proper spacing,

enforcing the density constraint iteratively until convergence.

5.4 Velocity Update and Integration
Once the position corrections are applied during constraint solv-
ing, the velocities of particles are updated to reflect the positional
adjustments. The updated velocity for particle 𝑖 is calculated as:

v𝑖 =
p𝑖 − x𝑖
Δ𝑡

, (59)

where p𝑖 is the corrected position, x𝑖 is the previous position
and Δ𝑡 is the simulation time step.

After updating the velocity, the final position of each particle is
integrated for the next simulation step:

x𝑖 = p𝑖 . (60)

These ensure that the particle states are consistent between
time steps. The velocity update incorporates positional corrections
into the particle’s dynamic behavior, while the integration step
progresses the simulation forward in time.

6 Neighbor Search Optimization
The neighbor search algorithm is a critical component of PBF, as
it identifies particles within the interaction radius ℎ of each parti-
cle. A naive implementation requires that every particle compares
with all other particles, resulting in a computational complexity of
𝑂 (𝑛2), which is prohibitive for simulations involving large particle
counts. To overcome this limitation, an optimized neighbor search
algorithm is implemented, dividing the simulation space into grid
cells and reducing the number of potential comparisons.

6.1 Grid-Based Partitioning
Grid Division: The simulation space is partitioned into a uniform
grid where each cubic cell has a side length equal to ℎ, the interac-
tion radius. This ensures that all potential neighbors of a particle
are contained within its own cell or the 26 adjacent cells. Particles
are assigned to cells based on their spatial coordinates, calculated
as:

cell𝑥,𝑦,𝑧 =

⌊x𝑖
ℎ

⌋
, (61)

where x𝑖 is the position of particle 𝑖 , and ℎ is the cell size.
Localized Search: To find neighbors for a given particle, only

the particles in its grid cell and the 26 neighboring cells are checked.
This reduces the number of comparisons from 𝑂 (𝑛2) to approx-
imately 𝑂 (𝑛) for large 𝑛, as the number of particles per cell is
bounded by the fluid density and interaction radius.

Dynamic Updates: Since particles move between cells during
the simulation, the grid is updated at each time step. This ensures
that particles are correctly reassigned to their respective cells, main-
taining the integrity of the neighbor search structure.

6.2 Neighbor Data Structure
For each particle, a neighbor structure is maintained to facilitate
efficient access during constraint solving:

Number of Neighbors: Tracks the count of particles within the
interaction radius ℎ.

Neighbor IDs: Stores the IDs of neighboring particles for direct
access during the simulation steps.

This structure not only speeds up the constraint-solving phase
but also minimizes memory overhead by avoiding redundant com-
putations.

6.3 Benefits of Grid-Based Neighbor Search
The grid-based neighbor search provides several advantages: Scal-
ability: By limiting comparisons to a small subset of particles,
the method scales effectively with increasing particle counts. Ef-
ficiency: The reduction in computational complexity makes it
feasible to simulate large fluid systems in real time.

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

Flexibility: The grid structure can accommodate dynamic parti-
cle distributions, such as those found in non-uniform or turbulent
flows.

This optimization ensures that neighbor determination remains
computationally efficient and scalable, allowing real-time simula-
tion of large particle systems without compromising accuracy.

6.4 Advantages of GPU Acceleration
Leveraging Compute Shaders in Unity enables the efficient simu-
lation of Position-Based Fluids by utilizing the parallel processing
capabilities of modern GPUs. This approach provides several key
advantages:

(1) Parallelism: Each particle’s computation, such as position
prediction, constraint solving, and neighbor search, is exe-
cuted concurrently across thousands of GPU threads. This
significantly reduces the computational time compared to
CPU-based implementations.

(2) Scalability: The grid-based neighbor search ensures that
the simulation can handle large particle systems efficiently,
as the computational cost grows linearly with the number
of particles.

(3) Real-Time Performance: GPU acceleration enables inter-
active fluid simulations, making it ideal for applications in
games, virtual reality, and interactive graphics, where high
frame rates are critical.

(4) Dynamic Behavior: The high computational throughput of
GPUs allows for the simulation of complex fluid phenomena,
such as turbulence, splashing, and mixing, in real time.

GPU acceleration transforms PBF simulations from computation-
ally intensive tasks into practical solutions for real-time applica-
tions. By leveraging parallel processing and optimized algorithms,
the simulation achieves a balance between physical accuracy and
computational efficiency.

7 Fluid Rendering Based On PBF
After the simulation is done using position-based particles, we can
continue with the fluid rendering. The technique we are using is
Screen-Space Fluid Rendering. This technique is used to simulate
and render fluid effects in real-time on a two-dimensional screen
space. Its main idea is to generate only the closest surface to the
camera, as shown in the diagram in Figure 8. Figure 9 is an overview
of the fluid rendering technique in the screen space. It includes a few
main steps including generating the depth of particles, smoothing
the depth, calculating the normals, calculating the thickness of
particles, and shading the surface.

Figure 8: Screen Space Fluid Rendering

Figure 9: Overview of Screen Space Fluid Rendering

Rendering Particle Spheres. First, we need to create a quad for
each particle in the geometry shader. Then in fragment shader,
discard the pixels outside the circle and calculate the normal, dif-
fuse and specular. Finally, render it on the screen using Graph-
ics.DrawProcedureNow. The Graphics. The DrawProcedureNow
function is used to draw geometry on the screen usingGPU-generated
vertices. The result is shown in Figure 10.

Figure 10: Particle shading effect

Generating the depth. We need to generate a depth buffer that
stores the distance from the camera to each pixel in the scene. In
the depth pass, calculate the depth and encode the depth into En-
codeFloatRGBA to ensure proper interpretation and compatibility
in order to use it as a color output or pass it to other stages of the
rendering pipeline. Returning the depth directly without encoding
will be fine if we only need the depth value within the shader itself
or for internal calculations. The result is as shown in Figure 11.

Figure 11: Unblurred depth effect

Smoothing the depth. Smoothing or blurring is a necessary step
in fluid rendering. Applying a smoothing or blurring filter such as
a Gaussian smoothing or bilateral filter to the intermediate buffers
(for example, depth and thickness) can help to reduce noise or
pixelation. After getting the depth texture, we need to blur the
depth using the bilateral filter. The result is as shown in Figure 12.

Calculating the normal. After having the blurred depth, the nor-
mals of the fluid surface can be generated. In the fragment shader,
calculate the eye space position from UV coordinates and depth.
Then, calculate differences that represent the change in eye-space

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

Figure 12: Blurred depth effect

position along the x and y axes. Next, calculate the cross products
and return the normal. The normals will determine the orienta-
tion of the fluid surface and are essential for lighting and shading
calculations. The result is as shown in Figure 13.

Figure 13: Normal effect

Calculating the thickness. Fluids are often transparent. Screen-
space surface rendering only generates surface nearest to the cam-
era, making it looks strange with transparency because we could
not see surfaces behind front. Hence, to solve this problem we
can shade fluid as semi-opaque using thickness through volume
to attenuate color. To generate the thick- ness, we should render
particles using additive blending and without depth test. To do this,
use geometry shader to generate the quads for each particle again,
then calculate the thickness and apply bilateral blurring on the
result. The result is as shown in Figure 14.

Figure 14: Thickness effect

Shading the surface. Finally, shade the surface with different
effects in ’surfaceShading.shader’.

Adding Basic Characteristics. Calculating the diffuse, ambient
and specular in fragment shader.

Figure 15: Diffuse Effect

Figure 16: Ambient Effect

Figure 17: Specular Effect

Figure 18: Diffuse + Ambient + Specular Effect

Calculating Beer’s Lambert Law. Light decays exponentially with
distance. Hence, we can use Beer Lambert’s law to calculate light
absorption and calculate the transparency as Figure 19. The formula
of Beer’s Lambert law is I = exp(-kd), where d = distance. The result
is as shown in Figure 20.

Figure 19: Beer’s Lambert Law

Figure 20: Beer’s Lambert Law effect

Calculating Fresnel. The Fresnel effect is a phenomenon in physics
that describes how light reflects and refracts when it encounters a
surface. The simplified mathematical approximation of Fresnel’s
equations is known as the Schlick approximation. It provides an effi-
cient and reasonably accurate way to compute the Fresnel reflection.
The result is as shown in Figure 21.

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

Figure 21: Fresnel effect

Final Result. The final shading result with all the effects men-
tioned before is as shown in Figure 22.

Figure 22: Final Fluid Effect

8 Smoothed Particle Hydrodynamics
8.1 Navier-Stokes equations
Smoothed particle hydrodynamics is a popular method for fluid
simulation. It relies on the Navier-Stokes to simulate the velocity
evolution across the fluid. The intuition behind it is quite simple,
SPH approximate a fluid as group of particles that interact with
each other. These particles have their own intrinsic mass, position,
velocity and forces applied to them. Navier-Stokes equation tells
us that the evolution of the velocity in the fluid is given by three
elements.

𝜌 (𝜕v
𝜕𝑡
+ (v · ∇)v) = −∇𝑝 + 𝜌𝜈∇2v + 𝜌f,

where:
• v is the velocity field,
• 𝑡 is time,
• 𝜌 is the density,
• 𝑝 is the pressure,
• 𝜈 is the kinematic viscosity,
• f is the body force per unit volume.

The left hand side of the equation is derived from

𝐷v
𝐷𝑡

=
𝜕v
𝜕𝑡
+ (v · ∇)v,

, so the acceleration of a particle depends only on the pressure
gradient, the Laplacian of the speed (viscosity) and the external
forces. We are making two strong assumptions about the simulated
fluid which are constant viscosity factor and incompressibility. The
first one is directly guaranteed with this version of Navier-Stokes
equation since the viscosity term is a field and not a tensor. We
need to verify the mass conservation equation

∇ · v = 0

. This equation is directly verified because the moving particles
carry their mass around.

8.2 Kernels
The principle characteristic of SPH is to use kernels to compute
quantities for a particle. Indeed interactions between particles can
be written as [3]

𝑓 (r) ≈
∑︁
𝑗

𝑚 𝑗

𝑓𝑗

𝜌 𝑗
𝑊 (r − r𝑗 , ℎ),

where:
• 𝑚 𝑗 is the mass of particle 𝑗 ,
• 𝜌 𝑗 is the density at particle 𝑗 ,
• 𝑓𝑗 is the value of the scalar field at particle 𝑗 ,
• 𝑊 (r − r𝑗 , ℎ) is the smoothing kernel with support radius ℎ.

Smoothing kernels are functions that say how much a particle in-
fluences another one with respect to their distance. We use finite
support function that integrate to 1. It means that the function is 0
for all distances exceeding h.

In our case we have the following quantities to compute:
1. Pressure Force[3]:

Fpressure = −
∑︁
𝑗

𝑚 𝑗

(
𝑃𝑖

𝜌2
𝑖

+
𝑃 𝑗

𝜌2
𝑗

)
∇𝑊 (r𝑖 − r𝑗 , ℎ),

where:
• 𝑃𝑖 and 𝑃 𝑗 are the pressures at particles 𝑖 and 𝑗 ,
• 𝜌𝑖 and 𝜌 𝑗 are the densities,
• 𝑚 𝑗 is the mass of particle 𝑗 ,
• ∇𝑊 is the gradient of the smoothing kernel.

2. Viscosity Force[3]:

Fviscosity =
∑︁
𝑗

𝑚 𝑗
𝜇

𝜌 𝑗

v𝑗 − v𝑖
𝜖2

∇2𝑊 (r𝑖 − r𝑗 , ℎ),

where:
• 𝜇 is the dynamic viscosity coefficient,
• v𝑖 and v𝑗 are the velocities of particles 𝑖 and 𝑗 ,
• 𝜖 is a small value to avoid division by zero.

3. Density Computation[3]:

𝜌𝑖 =
∑︁
𝑗

𝑚 𝑗𝑊 (r𝑖 − r𝑗 , ℎ),

where:
• 𝑚 𝑗 is the mass of particle 𝑗 ,
• 𝑊 (r𝑖 − r𝑗 , ℎ) is the smoothing kernel.

From density we can easily get pressure which is simply: Equa-
tion of State

𝑃 = 𝑘 (𝜌 − 𝜌0),

where:
• 𝑘 is the stiffness constant,
• 𝜌 is the current density,
• 𝜌0 is the reference (rest) density.

We found different kind of kernels in the literature and we decided
to use these three following kernels:

Carnegie Mellon University, 15673 - Visual Computing Systems Moussab Tony Flora

1. Density Kernel[3]:

𝑊density (r) =
{

315
64𝜋ℎ9 (ℎ2 − |r|2)3, if |r| ≤ ℎ,

0, otherwise,

where:
• |r| is the magnitude of the vector r,
• ℎ is the influence radius.

2. Pressure Kernel Gradient[3]:

∇𝑊pressure (r) =
{
− 45
𝜋ℎ6 (|r| − ℎ)2 r

|r |+10−5 , if |r| ≤ ℎ,

0, otherwise.

3. Viscosity Kernel Laplacian[3]:

∇2𝑊viscosity (|r|) =
{

45
𝜋ℎ6 (ℎ − |r|), if |r| ≤ ℎ,

0, otherwise.

8.3 Implementation
Having defined the theoretical basis of SPH, we now describe its
computational implementation. We can quickly see that this simu-
lation can benefit from parallelization. Indeed every particles per-
forms only read operations to other particles’ data when it computes
its density, pressure etc. Thus we can separate each of these com-
putation in functions that execute in parallel for particles. This can
be done in Unity with the use of compute shaders.

The main bottleneck in this simulation is similar to that in Position-
Based Fluids (PBF). Indeed we also perform O(𝑛2) particles look up
operations every time step. This can greatly reduce the number of
particles we may be able to simulate. The best method to address
this issue is as PBF to split the space into a grid mapping every par-
ticles to its cell. Then look ups will only be performed with particles
within the same cell. This method take advantage of the particles
distribution in the space. Indeed it is very unlikely that all particles
are within a single cell. Thus if we have k cells with a uniform
distribution we can reach O(𝑛

2

𝑘
). However too many cells would

reduce realism. This method is in fact very similar to sort-middle
tiled approach we used to build a parallel renderer without lock.

8.4 Results
We had some good results with SPH reaching around 10’000 parti-
cles without the grid partition. We could reach that many particles
because we used indirect instancing in Unity allowing each parti-
cle’s data to be initialized and computed exclusively on the GPU.We
could also avoid the use of a mesh and simply represent the particle
as a point and a texture but the mesh approach opens the way to
more advanced rendering method such as Raymarching/Raytracing.
On our side we implemented the optimization however Unity kept
crashing. Moreover as a sorting operation is required every update
we need to transfer all data to CPU every cycle since sorting directly
on GPU would lead to severe race conditions.

Finally, the hyper parameters are crucial to obtain a good sim-
ulation. The time step has to be carefully chosen because a small
time step slow down the simulation and a large one make it unsta-
ble. Additionally, the frame rate i.e. the number of update every

second is determined by GPU capabilities so these hyper parameter
wouldn’t produce the same result on different machines.

9 Eulerian Grid
Opposed to Smoothed particle hydrodynamics, this method sim-
ulate the space as vector field rather than discrete particles. The
space is divided into a grid of cells in which each cell has its own
quantities such as velocity or density. The evolution of the cell’s
values is determined by the Navier-Stokes equations.While the grid
itself does not represent a moving fluid, introducing density or
velocity into specific cells initiates a propagation of these values
through the grid. This behavior can simulate phenomena such as
smoke spreading or dye diffusing in water, emulating fluid motion.
There are many different way to represent this fluid movement
such as pressure/density color gradient or arrows for the velocities
field.

9.1 Navier-Stokes
In order to have a simulation we only need to repeat three steps
every time step. Compute advection, enforce incompressibility and
add external forces [4].

Indeed the left hand side of the Navier-Stokes equation only con-
tains the velocity evolution over time and the advection term that
we have to compute ourselves since the grid is fixed the velocity is
not moving with the particle as in SPH (this term cause a viscosity
effect since we interpolate value in cells making small value to
vanish)[4]. Additionally, we need to enforce incompressibility to
satisfy the mass conservation equation, as a cell does not carry any
mass. Finally, we include external forces, which correspond to the
first term of the Navier-Stokes equation, representing the evolution
of velocity in a cell over time. We present an implementation for
a 2D simulation, However, it is fairly easy to transition to a 3D
simulation in Unity.

9.2 Implementation
1.Avdvection[4]:Advection is calculated using the semi-Lagrangian
method, which tracks the movement of fluid quantities (e.g., veloc-
ity or density) by tracing them backward in time. This method is
suitable in our case because it provides a great stability even with
large time step.

(1) Compute the source position for each grid cell:

xsource =
[
𝑥current
𝑦current

]
− Δ𝑡

[
𝑢 (𝑥current, 𝑦current)
𝑣 (𝑥current, 𝑦current)

]
,

where Δ𝑡 is the time step, 𝑢 and 𝑣 are the horizontal and
vertical components of the velocity field, and xsource is the
position from which the quantity is advected.

(2) Perform bilinear interpolation to obtain the quantity 𝑞 at
xsource:

𝑞new (𝑥current, 𝑦current) =
1∑︁

𝑖=0

1∑︁
𝑗=0

𝑤𝑖 𝑗 𝑞(𝑥𝑖 , 𝑦 𝑗),

where (𝑥𝑖 , 𝑦 𝑗) are the grid points surrounding xsource, and
𝑤𝑖 𝑗 are the bilinear interpolation weights.

Realistic Water Simulation Carnegie Mellon University, 15673 - Visual Computing Systems

(3) Update the grid value:

𝑞(𝑥current, 𝑦current) ← 𝑞new (𝑥current, 𝑦current).
2. Incompressibility[4]:

To maintain incompressibility, we solve the pressure projection
step using the Gauss-Seidel method. Although this iterative solver
is quite slow we decided to stick with it because of its simplicity.
We could parallelize the algorithm with a compute shader with
minimal overhead. The pressure projection step ensures that the
velocity field v is divergence-free (∇ · v = 0) by solving the Poisson
equation for pressure 𝑝:

∇2𝑝 = ∇ · v,
where ∇2𝑝 is the Laplacian of the pressure field, and ∇ · v is the
divergence of the velocity field(In our case we could directly use
the known velocities).

(1) Calculate Divergence: For each cell (𝑖, 𝑗), compute the diver-
gence based on the velocity field:

divergence(𝑖, 𝑗) = 𝑣 (𝑖, 𝑗) − 𝑣 (𝑖, 𝑗 + 1) + 𝑢 (𝑖, 𝑗) − 𝑢 (𝑖 + 1, 𝑗),
where 𝑢 (𝑖, 𝑗) and 𝑣 (𝑖, 𝑗) are the horizontal and vertical ve-
locity components, respectively.

(2) Distribute Divergence: Distribute the divergence correction
among neighboring cells:

divergence← divergence × overRelaxation,

𝑣 (𝑖, 𝑗) ← 𝑣 (𝑖, 𝑗) − divergence
tot

,

𝑣 (𝑖, 𝑗 + 1) ← 𝑣 (𝑖, 𝑗 + 1) + divergence
tot

,

𝑢 (𝑖, 𝑗) ← 𝑢 (𝑖, 𝑗) − divergence
tot

,

𝑢 (𝑖 + 1, 𝑗) ← 𝑢 (𝑖 + 1, 𝑗) + divergence
tot

,

where tot is the number of valid neighbors (accounting for
boundary cells).

(3) Iterate for Convergence: Repeat the above steps for a fixed
number of iterations or until the residual divergence is suffi-
ciently small

Divergence =< 𝜖.

(4) Boundary Conditions: Adjust velocity values at boundaries
(𝑢boundary, 𝑣boundary).

9.3 Results
We got good result with this simulation that is more stable than
SPH as it avoids the numerical instabilities caused by very close
particles. Initially, we implemented the simulation as a script, as
debugging is easier compared to using shaders. This approach saved
us significant time. We learned this lesson during the SPH imple-
mentation, where we spent several days debugging in shaders, only
to rewrite everything back as a script and start over. We could
simulate around 2000 cells with the script only and the compute
shader increased the performance dramatically to reach more than
10’000 cells.

Opposed to SPH the parallelization of this simulation is not triv-
ial since cells are not independent entities compared to particles. We
had to find some techniques to avoid race condition in the shader.
To parallelize the Gauss-Seidel solver, we partitioned the grid into
independent groups of cells, allowing updates to be performed con-
currently within each group without race conditions in a compute
shader. Since cells share between 2 to 4 edges, we had to use a
chessboard partition that splits the computation into two disjoint
groups of cells. So only half of the grid is processed in parallel.

Advection does not directly modify the velocity buffer. Since each
computation must be independent of the previous one and cells
share edges, we use the original array for computations and write
the results to an output array. This approach simplifies paralleliza-
tion, as there is not any concurrent read and write operation. How-
ever, further optimization is possible because all edges, except those
on the border, are computed twice. To address this, we perform
the computation for only one of the two neighboring cells, except
for border cells where all edges are processed. Finally the external
forces are simply added to the process without any modification.

10 State of the art
Smoothed particle hydrodynamics (SPH) and the grid-based ap-
proach are both commonly used in fluid simulations today. SPH,
with its particle-based nature, excels at capturing small details
such as droplets and splashes, producing highly realistic results.
In the other hand, the grid-based approach offers a more robust
and computationally efficient solution, particularly for simulating
large fluid zones. While the computational cost of SPH increases
with area to maintain realism, the grid-based method can be eas-
ily extended to simulate larger fluid volumes without significant
performance degradation. We also tried to explore two advanced
methods we came across during our research: the material point
method (MPM)[1] and convolutional neural networks (CNN)[2],
but unfortunately we ran out of time to be able to implement them
successfully.

References
[1] A. Imam Kistidjantoro Afwarman Manaf Dody Dharma, Cliff Jonathan. 2017.

Material point method based fluid simulation on GPU using compute shader.
(2017). https://ieeexplore.ieee.org/abstract/document/8090962

[2] Pablo Sprechmann Ken Perlin Jonathan Tompson, Kristofer Schlachter. 2017.
Accelerating Eulerian Fluid Simulation With Convolutional Network. (2017).
https://proceedings.mlr.press/v70/tompson17a

[3] David Charypar Matthias Müller. 2003. Particle-Based Fluid Simulation for In-
teractive Applications. SIGGRAPH Symposium on Computer Animation (2003).
https://matthias-research.github.io/pages/publications/sca03.pdf

[4] Nuttapong ChentanezMatthias Müller. 2011. Real-Time EulerianWater Simulation
Using a Restricted Tall Cell Grid. ACM SIGGRAPH 2011 (07 2011). https://dl.acm.
org/doi/pdf/10.1145/1964921.1964977

[5] Nelson L. Max. 1981. Vectorized procedural models for natural terrain: Waves
and islands in the sunset. SIGGRAPH Comput. Graph. 15, 3 (aug 1981), 317–324.
https://doi.org/10.1145/965161.806820

[6] Jerry Tessendorf. 2001. Simulating Ocean Water. SIG-GRAPH’99 Course Note (01
2001).

https://ieeexplore.ieee.org/abstract/document/8090962
https://proceedings.mlr.press/v70/tompson17a
https://matthias-research.github.io/pages/publications/sca03.pdf
https://dl.acm.org/doi/pdf/10.1145/1964921.1964977
https://dl.acm.org/doi/pdf/10.1145/1964921.1964977
https://doi.org/10.1145/965161.806820

	Abstract
	1 Introduction
	2 Linear Wave Superposition Method
	2.1 Sine Oscillator
	2.2 Gerstner Oscillator

	3 A Simple Discussion on Complex Numbers
	3.1 Complex Numbers
	3.2 Matrix Representation of Complex Numbers
	3.3 Rotation Representation with Complex Numbers
	3.4 Geometric Interpretation of Complex Numbers
	3.5 Euler's Formula

	4 Statistical Modeling Methods
	4.1 Fourier Transform
	4.2 Discrete Fourier Transform (DFT)
	4.3 Four-Point DFT
	4.4 Four-Point FFT
	4.5 Cooley-Tukey FFT Algorithm
	4.6 Statistical Oceanographic Model
	4.7 Temporal Evolution of Wave Height Field
	4.8 Inverse Fourier Transform for Generating Wave Height Field
	4.9 Steps of the Inverse Fourier Transform Algorithm

	5 Position-Based Fluids (PBF) Algorithm
	5.1 Predict Position
	5.2 Density Constraint
	5.3 Position Correction
	5.4 Velocity Update and Integration

	6 Neighbor Search Optimization
	6.1 Grid-Based Partitioning
	6.2 Neighbor Data Structure
	6.3 Benefits of Grid-Based Neighbor Search
	6.4 Advantages of GPU Acceleration

	7 Fluid Rendering Based On PBF
	8 Smoothed Particle Hydrodynamics
	8.1 Navier-Stokes equations
	8.2 Kernels
	8.3 Implementation
	8.4 Results

	9 Eulerian Grid
	9.1 Navier-Stokes
	9.2 Implementation
	9.3 Results

	10 State of the art
	References

